Software Maintenance

Set a Custom Extraction (Working) Directory

When AppLife downloads and executes a maintenance package, a working directory is created in a designated location on a deployed client. Depending on the configuration, this is usually in a user’s temp directory. Sometimes it is necessary to define a specific working directory for a machine. AppLife provides a mechanism to accomplish this.

Add a key to the 64 bit registry. HKLM\SOFTWARE\KineticJump\AppLifeUpdate\ApplicationSettings\{Your Application ID GUID}

Add an UpdatePackageDirectoryRoot string value.

If a value exists for an application, the AppLife Engine and Launcher will utilize the specified directory. The Windows Identity of the host process will need to have both write and execute permissions to the directory.

Insert Raw Xml During an Update

The Change Xml Node action can be used to add content to an Xml Node, and it can also insert additional, or raw Xml into a file.  To insert raw Xml, uncheck the option to Use Xml encoding in replacement text.

Here’s an example of when this feature comes in handy.  The objective is to insert two new entries into the web.config assemblyBinding node.  We can replace the entire content of the target node as raw Xml.  After an update, we end up with:

Here’s what is inserted if we do not uncheck the box:

Clearly not the desired result.

GO Statements in Run SQL Action

What’s in a GO statement?  Quite a bit actually.  Contrary to popular belief, GO is not actually part of T-SQL.  It is a command recognized by the sqlcmd and osql utilities and the SQL Server Management Studio Code editor.  When we created the Run SQL Query update action, we included parsing on GO during the update build process, which allowed users to execute their migration scripts when including them as a .sql file.  This works nicely for pure SQL.  However, when SQL is inserted into the action editor, it is parsed real-time as the update is executing. In this context, the the SQL was passed directly into a SQLCommand object and executed.  GOs don’t fly there.  So why wouldn’t one just put their SQL into a .sql file and let the build process parse the GO statements?  Shared Property expansions.  If you want to use Shared Property information as part of your SQL input, things became difficult.  With AppLife Update 5.1, we’ve added GO parsing to the update engine and what was once difficult, is now quite easy.

Replicate Updates Locally

In situations where there are many deployed systems located on the same local network combined with a need to minimize bandwidth utilized in retrieving application updates it is advantageous to provide a means to download update packages only once for everyone. With a new feature of AppLife Update 5.0, creating this ability is quite easy.

After an Update Controller checks for and downloads available updates, you can now save the downloaded package(s) and Director.Xml file to a local folder by calling the Update Controllers SaveUpdatesToLocal method.

As an example, let’s modify the C# Simple Quick Start project that ships with AppLife Update to first check a local folder for updates before checking the public location. Any updates downloaded from the public location will be copied locally for other local systems to find. To accomplish this, we’ll add a few Main form variables to hold the Public and Local update locations.

1:  public partial class Form1 : Form {  
2:   private string mPublicUpdatePath = @"http://www.kin…/SaveToLocalExample";  
3:   private string mLocalUpdatePath = @"P:\Updates\SaveToLocalExample";  

This Quick Start uses the UpdateDisplay control to manage the update process.  To integrate with that process, we will use the CheckForUpdateCompleted and the DownloadUpdateCompleted events of the Update Controller.

Basically we are going to initially check the local update folder for updates.  If no updates are found locally, we’ll check the public update folder.  If we find any updates in the public location, we’ll save them locally with the new SaveUpdatesToLocal method.  So here goes.

Modify the Update Controller’s default Update Location to be the local update path, and then attach to the two events.

First, lets handle the CheckForUpdateCompleted event.  This event fires whenever the Update Controller completes an update check.  If the private location was checked, we’ll just switch to the public location and check again.

1:  private void updateController1_CheckForUpdateCompleted  
2:       (object sender, CheckForUpdateCompletedEventArgs e) {  
3:       UpdateController c = sender as UpdateController;  
4:       if(c.UpdateLocation == mLocalUpdatePath) {  
5:            //we checked the local path. If we didnt find any  
6:            //updates, lets check the public path  
7:            c.UpdateLocation = mPublicUpdatePath;  
8:            c.CheckForUpdateAsync();  
9:       }  
10:  }  

And then finally, in the DownloadUpdateCompleted event, we’ll look to see if the update that was just downloaded came from the public location.  If so, we’ll save it to the local folder using the new method.

1:  private void updateController1_DownloadUpdateCompleted  
2:       (object sender, AsyncCompletedEventArgs e) {  
3:       UpdateController c = sender as UpdateController;  
4:       if(c.UpdateLocation == mPublicUpdatePath) {  
5:            //downloaded an update from the public path. Save it locally  
6:            c.SaveUpdatesToLocal(mLocalUpdatePath, false);  
7:       }  
8:  }  

If multiple update packages were downloaded as a chain collection, all of the update packages will be saved by the SaveUpdatesToLocal method.

Application Update Customization using Custom Data

When publishing updates for applications, it is often helpful to implement rules that can be applied on an update-by-update basis. With AppLife Update, the custom data field provides this opportunity.

clip_image001

With each update, you can specify a custom data string to go with the update. This value is then available to your application after an update check has been performed. Your application can interrogate the value and control additional logic based on the information. As an example, when creating updates for AppLife Update, we use this field to know whether or not the update requires Visual Studio to be closed. If it does, we add a RequiresVSClosed property to the custom data field.

 

Accessing the Custom Data in Your Application

After an update check, the update controller has a CurrentUpdate property that holds an UpdateInformation object. This object has a CustomData property that holds, you guessed it, the Custom Data string that you specify when publishing the update.

Code Snippet

if(updateController1.CheckForUpdate()) {

string customData =updateController1.CurrentUpdate.CustomData;

}

 

Changing Custom Data after Publication

Custom Data can be modified after an update has been published without having to re-build the update package itself. To modify custom data, you can Manage Published Updates…

From the Manage Published Updates dialog the Custom Data string can be modified and then published.

clip_image002

A Class to Parse Name/Value Pairs

A common approach to be able to provide multiple pieces of information through the custom data string is to use a name/value pair syntax, and then extract this information within your application code. To help with this, here is a class that will parse a custom data field using a name=value; syntax.

AppUpdateCustomData.cs and AppUpdateCustomData.vb

Using this class, you can easily extract and use multi-value custom data strings in your applications.

clip_image003

Using the AppUpdateCustomData class:

Code Snippet

1:  if(updateController1.CheckForUpdate()) {  
2:    Kjs.AppLife.Update.AppUpdateCustomData customData = newKjs.AppLife.Update.AppUpdateCustomData(updateController1.CurrentUpdate.CustomData);  
3:   string myValue1;  
4:   string myValue2;  
5:   if(customData.DataTable.ContainsKey("MyName1")) {  
6:  myValue1 = customData.DataTable["MyName1"];  
7:   }  
8:   if(customData.DataTable.ContainsKey("MyName2")) {  
9:   myValue2 = customData.DataTable["MyName2"];  
10:   }  
11:  }  

In conclusion, the Custom Data field provides the means for update publishers to assign information to individual update packages that applications can use to control application update behavior.

Using a Pre-Build Script for File Automation

When an application update is built with AppLife Update, you can define a pre-build and post-build batch script to run during the build process. This ability to easily interact with the build process provides, among other things, the means to move files around on the build system before the actions in the action list are built. This allows for accomplishing automation tasks that might otherwise require a custom action builder. Action builders are more powerful, but more technically complicated as well. Creating a pre-build script is easy. In this post, I will demonstrate the use of a pre-build script to remove the necessity of manually modifying an action configuration before building an update.

Hub and Spoke Update Deployment Example

The Hub and Spoke Update Deployment solution lab outlines how AppLife Update can be used to “update” multiple application update servers. This is a part of a process that allows a software publisher using AppLife Update to maintain many remote update servers for their applications. With remote update servers, client systems can check for and retrieve updates from servers that are on their local networks, instead of from a global update server over a wide area network.

The update actions that maintain those remote application update servers simply add two files to the update. The first file is the Director.Xml document, and the second file is the newest update package built for the application. This file is named major.minor.build.revision.zip based on the current version number of the application. The issue here is that the version number always changes, and when a standard Add & Replace Files action is utilized, the action configuration must also change with each new update in order to address the proper update package.

With a little help from the pre-build batch script and using a different update file action, we can remove this requirement to manually modify the update configuration with each update, which makes creating the remote server update a one-step process using the AppLife Make Update tool. Configured this way, the remote server update build can also be easily incorporated into a larger automation process using the Command Line build utility.

The Pre-Build Script

The project pre-build script can be accessed from the project settings dialog, under the build tab. When creating a pre/post build script, there are replacement values that can be inserted into the script. Replacement values provide access to contextual information from the update project. We’ll be taking advantage of the $UpdateVersion$ and $ProjectDirectory$ replacements to accomplish the goal.

The goal of the pre-build script is to empty a working folder, and then add the two files that will be included in the update to the working folder. The two files will be the Director.Xml file and the application update package that matches the designated update version. The script will copy these files from a local folder that represents the primary application update folder, and will be addressed in the script using a relative file path from the current AppLife Update project file location. After the pre-build script runs, there will be a working directory that contains two files. The Director.Xml file and the application update package (a.b.c.d.zip) file that matches the defined update version number. Then, we just need to use an update action to add these files to the update. Here is the script.

Set WorkingPath=$ProjectDirectory$\Current Update

Set AppUpdatePath=$ProjectDirectory$\..\Application Updates

Del %WorkingPath%\*.*

Copy “%AppUpdatePath%\Director.Xml” “%WorkingPath%”

Copy “%AppUpdatePath%\$UpdateVersion$.Zip” “%WorkingPath%”

Using replacements, we have access to the version number of the update currently being built, and we also have access to the path of the .aup AppLife Update project file. We use this information to copy the correct update package from the correct folder.

The Update Actions

With the pre-build script, the files that we want to add to the update is going to be sitting in a folder named Current Update that is a sibling to the AppLife Update .aup project file. Normally, we wouldn’t care which order the files are copied during the update, and the most obvious update action to use would be the Add Folder Content action. This action would simply add both of the files to the update as the update is built, and then write them to the designated client directory as the update engine executes the action on deployed clients. In this case though, we do care about order. We want the update package file copied first, and then the Director.Xml file. Because of this, we’ll use the Masked Add & Replace files action. With this action, we can apply a mask to the files that will be added to the update package. The first action will add the update package, and the second action the Director file. By applying a mask of (*.zip), the update package is added to the update.

To add the Director.Xml file to the update, we could have chosen the Add & Replace Files action, but for consistency we use another Masked Add & Replace action with a mask of *.Xml.

With these two actions in place, the appropriate update package file and the corresponding Director.Xml file is added to the update package and will be placed in the application updates folder on remote update servers. To publish an update, no changes are necessary to the update project. We simply open AppLife Update and walk through the publish wizard. When the update version is defined in the wizard, the correct application update package is automatically included.

Accessing Local Directories during an Application Update

Most application files reside in the installation directory, referred to within AppLife Update as the Application Directory. The AppLife Update execution engine determines the Application Directory from the physical location of the executable that launches the update. When any of the file related update actions are added to an update action list, the default directory that is targeted is the Application Directory.

This is most often the location where files need to be added or replaced during an application update. Accessing paths relative to the Application Directory can be accomplished using the subdirectories property.

And navigating up the directory tree…

In addition to the Application Directory, you can target any of the well-known named folder locations as well, such as the current user’s profile directories.

Using an Explicit Path

You’ll notice in the list of directories, there is an Explicit Path option. This option lets you specify the entire path to use for the file action. At first glance, this feature doesn’t look all that useful, but when combined with Shared Properties, it becomes a very nice feature.

Expanding Shared Properties in Place

Shared Properties can be used in many action properties. Most of the properties of built-in actions have the ability to expand a Shared Property in place. These properties are adorned with a blue icon indicating their support of this feature. A Shared Property is inserted using $$ delimiters, and during update execution, the value of the designated Shared Property is inserted in-place of the delimiter.

So for file actions, we can use a Shared Property to target an explicit folder, which opens up lots of possibilities because Shared Property values can be passed in from the host application, set by other update actions that can read from a database, the registry, xml config files, or custom actions running your own code.

An Example–MaintainingOfficeTemplates

Say your application installs templates for Microsoft Office and you need to maintain those templates during an application update. There is a default location for Office templates however this location is user configurable, so it could be different on every system. The default template location is located in the current user’s roaming application directory.

CurrentUserRoamingAppDataFolder\Microsoft\Templates

If the user has specified a custom template location, we can find this path in the registry.

HKEY_CURRENT_USER\Software\Microsoft\Office\14.0\Common\General – UserTemplates

One caveat is that if the user has not specified a custom location, this registry key is not present. So in order to target the correct folder, we’ll need to read the user configured location from the registry, and then use that location with an Add & Replace files action. If the registry value is not present, we’ll also set the default value of this shared property to the correct default location by expanding another Shared Property.

Action 1 – Add a Set Shared Property action and set a Shared Property to the current user’s local roaming AppData folder path. We’ll use this to set the default value in the next action.

Action 2 – Add a Read Registry Value action to get the User Configured template directory from the registry and assign the value to a new Shared Property. If the value doesn’t exist, we’ll set the default value with the path identified in action 1.

Action 3 – Add an Add & Replace Files action and use an explicit path to target the correct templates folder.

Using Shared Properties and explicit paths, we can easily access and maintain files and assemblies in any local directory that our application uses.

Updating Software Operating on Erratic and Unreliable Networks

Download:
Example Project Source Code

When your software operates in an unreliable networking environment, it can be very challenging to automatically maintain your software installation. These environments are quite common. Police cruisers and ambulances use laptops to run software in the field, relying on cellular technology to distribute updates. Traveling salesmen use proprietary laptop business software and are constantly going in and out of network coverage. Medical staff use their mobile pc’s in large medical facilities, where dropping connections in elevators and dead Wi-Fi spots is common place. In scenarios like these, professionals are using software that must be maintained. In today’s professional environments, software maintenance is expected to “just happen”, without interrupting the work of the professionals using the software. Software publishers who create software that operate in environments like these all face the same challenge of maintaining their software without requiring support staff to take possession of the hardware. The AppLife Update Solution provides the answer for many software publishers whose applications operate in environments like this.

With the AppLife Update solution, software publishers create and publish self-contained update packages that migrate an installation from one version to another. These update packages are retrieved by the client software when network connectivity is present. Once the update package is retrieved, network connectivity is no longer required and the update can be applied, performing the work necessary to maintain the deployed installation. As the update package is downloaded, the partial download is cached locally so that any interruption in network connectivity will not require restarting from the beginning.

The flexibility of the AppLife Update solution provides the ability to change the behavior based on known circumstances. When it is known that the software being maintained is going to operate in an unreliable networking environment, it is possible to handle network connectivity errors differently than normal. Normally a network connectivity error would be unexpected and the user would be notified of the situation. Instead, the application can postpone the update retrieval operation for a short period of time and try again. And try again. And try again, until the update retrieval succeeds and can be applied.

Example Implementation

In the example project accompanying this post, the updating functionality is completely automated. The implemented updating process can be described as:

When the application launches, a background update check is performed. If an update(s) is available, the update packages are retrieved in the background and without user interaction. If network connectivity is lost, the retrieval is postponed and continually retried in the background without user interaction until the update is successfully retrieved. Once retrieved the user is prompted to either apply the update now, or when the application is closed. If the user elects to apply the update, the update is applied and the application restarted. If the update is deferred until the application exits, the update is applied as the application exits and the application is not restarted.

The example project contains an Updater class that controls the update check and retrieval process. Inspecting the Updater class, you’ll see that the class maintains an AppLife Update Controller and uses the API methods and events of the update controller to pause and retry as network errors occur. When an update package is successfully downloaded, an event is raised, alerting the primary application that an update is ready to be applied. The implementation code in the primary application is very simple. An Updater class is instantiated and the Update Controller properties are configured. Once configured, the GetUpdateCompleted and GetUpdateProgressChanged events are hooked before calling the GetUpdateAsync method. That’s it. Any updates will be retrieved as the network allows. When the completed event fires, the Updater status is checked and the user is prompted to apply the update now or when the application exits.

Implementation Details

The Updater class is the heart of the implementation. It has a very simple interface:

The Updater class wraps an AppLife Update Controller and exposes a single method that implementing code will call to perform the entire update process.

We want to take a look at the GetUpdateAsyncmethod. This method calls the Update Controller’s CheckForUpdateAsync method and then returns. The update process continues in the CheckForUpdateAsyncCompleted event handler. If an update is present, the DownloadUpdateAsync method is called. When the download completes, the GetUpdateCompleted event is raised. When these asynchronous methods are called, any network errors will cause the completed event to fire, and the event argument’s Error property will indicate the cause of the error. Based on the error information, we can take appropriate action. In this example, we are considering any WebException or IOException to indicate a network error. Your implementation can improve on this, based on environment specifics. At any rate, when a network error is detected, the updater class goes into a wait mode and try’s the check/download again after a period of time. Eventually, the update download is completed, and the GetUpdateCompleted event is raised, triggering the client application to prompt the user.

Of course, the user experience behavior is completely customizable with just basic coding. The AppLife Update Controller performs the heart of the technical challenges involved in this implementation, and the Update Engine is what lets you package up any work that is necessary to maintain and migrate your deployed installations. So I invite you to take a look at the example and evaluate it for suitability in your own environment. Feel free to contact our technical support team with any questions.

Easily Modify .Config Files During an Application Update

The beauty of .Net configuration files (.config) is that they let you easily change the behavior of your application for individual installations. This allows for a great deal of flexibility, especially with service related settings. With this flexibility though, also comes a maintenance challenge. Unlike all of your other application files, configuration files usually can’t be simply replaced during a maintenance update. Doing so would lose any customizations made to support the specific application installation. As your application evolves, it is inevitable that your configuration files will require modification. With AppLife Update, you can easily maintain .Net configuration files without replacing them by modifying the existing files. I’ll cover three different methods that you can use, based on the type and scope of the config file modification that is necessary.

  • Modify the existing config file directly using Xml Update Actions
  • Migrate specific settings from an existing config file to a new config file using Shared Properties and Xml Update Actions
  • Utilize custom .Net code to manipulate the config file during an update

Modify the Existing Config File

Using Xml Update Actions is great for adding elements and updating attributes. As an example, let’s say that we use appSettings in our application and we need to add a new appSettings value in support of a new feature. We can use an Add Xml Element update action to insert a new appSettings value into the existing config file.

This is what the v1 application configuration file might look like:

But for v2, the configuration file might need to look like this:

To migrate version 1 installations to version 2, in addition to replacing the application assemblies we must add a new entry to the appSettings collection. To do this, we’ll use an Add Element update action.

When configuring Xml update actions, XPath expressions are used to reference the specific Xml elements that you are interested in reading and writing. To accomplish our goal, we will use an XPath expression to access the appSettings node, and then add a new element to that node. The config file is located in the Application Directory and is named Simple.exe.config.

The XPath expression is /configuration/appSettings. The element that we are adding is:

<add key=”key2” value=”value2” />

The name of the element is add, and the new element has two attributes, key and value. Add a new Add Element update action to your update project and configure it as below.

With this action in place, the new element will be added to the configuration file when the update is executed.

Another scenario where Xml actions are great is when we need to update a specific attribute. Using a Change Node action, the value of an existing appSettings entry is easily accomplished. For instance, consider the situation where in v3 of our application, we needed the key2 value to be modified to value3. This can be accomplished in a very similar process. Instead of adding an Xml Element, we can use the Change Node update action to modify an existing value. To accomplish this, we need to know the XPath that references the specific value that needs to be changed. In this case, the XPath expression is /configuration/appSettings/add[@key=”key2”]/@value.

Adding a Change Node action configured like this will modify the attribute value to “value3”.

Migrate Existing Values to a new Config File

In some circumstances where there are wholesale changes to a config file that would require extensive modifications to the existing file, it could require less effort to extract specific values that are unique to the installation and migrate them to a new config file. In this scenario we use Xml Actions to read specific information from the existing config file and store that information in Shared Properties. We can then replace the config file with an Add & Replace Files update action, and finally use Xml actions to write the information that we stored into the new config file.

Revisiting the previous example, we’ll take this approach for the necessary modifications. We’ll read and store the value of the key1 appSetting, then replace the config file and modify that value in the newly replaced configuration file.

Reading the existing value, we’ll add and configure a Read Xml Node Action. Using this action, we set the config file name and XPath just as before. We’ll also designate a Shared Property to store the attribute value. Shared Properties are essentially variables that are scoped across the context of the executing updates. They allow for information to be shared between update actions. The Read Xml Node action will assign the string value of the designated attribute to the designated Shared Property.

With the value of the existing attribute stored, we can replace the application configuration file using an Add & Replace Files action.

After this action executes, the application configuration file will be replaced with a new updated version. However, the value of the attribute we are interested in will also have been reset to its default, non-customized value. To complete the update process we need to use the value that we previously stored to change the new configuration file. A Change Xml Node update action will update the attribute value. When using string value Shared Properties, the value of the Shared Property can be expanded using $SharedProperty$ syntax.

The Change Xml Node action restores the value originally set on the specific client and completes the update process.

Utilize .Net Code to Modify an Existing Config File

When using Xml Actions and Shared Properties, we read and write string values to the config file. In some circumstances, it can be beneficial to approach the Xml maintenance process within code, where the Xml can be manipulated in fragments. This too can be easily accomplished during an update using the Dynamic Code Action. A Dynamic Code action allows you to easily create a custom update action, which extends the UpdateAction class and overrides, at a minimum, the Execute and RollbackExecute methods.

With a Dynamic Code action you can use C# or VB.Net code to manipulate the deployed client. Here we use the context parameter to access the information we need to accomplish our goal in code. You can access local directory information as well as the Shared Properties collection. With this information, we load an XmlDocument and manipulate the file within our custom code.

Summary

During software maintenance updates, application configuration files that are uniquely modified for each installation cannot be simply replaced as changes are made to support new versions. These config files must be modified in-place during the maintenance process. Using AppLife Update, application configuration files can be easily maintained throughout the life of the application and we present three different approaches to accomplishing the goal.

Updating a Windows Service

For applications that deploy a Windows Service, updating the installed service can present a maintenance challenge. This is a scenario where integrating AppLife Update makes a difficult task extremely easy to accomplish. Using AppLife Update actions, a Windows Service can be updated in three easy steps.

  1. Stop the Service using a Stop Service update action.
  2. Replace the Service assemblies using one of the available file replacement actions.
  3. Restart the Service using a Start Service update action.

Tada! Big maintenance challenge accomplished.

An Example

The release of AppLife Update 4.5 included a few very small changes to our AppLife Update Windows Service. Specifically, in previous versions, if the Windows Application Event Log was full and not configured to replace old events, our service would not apply an update.  Here’s how to update a service using AppLife.

Stop the Service

To stop the service, we need to know the service name. If you don’t already know the name of the service you are updating, it can be found in the Windows Service Manager.

Add a Stop Service action to your AppLife package. Set the Service to Stop property to the name of your service. In this case, the service name is KjsUpdateService2.

Replace the Service Assemblies

Use an Add & Replace files on Restart action to update the assemblies. The AppLife Update Windows service is initially deployed using an MSI merge module, and is always installed to the Common Files Folder\AppLifeUpdateService2 folder. To update the service, we’ll select the Common Program Files (x86) client folder and set the appropriate sub-directory, and then add the two assemblies that constitute the service. Choosing the x86 variant of the Common Program Files folder will ensure we target the x86 common files folder on x64 operating systems. Using the non x86 Common Program Files directory targets the x64 folder on 64-bit operating systems. On x86 operating systems, there is only one common program files directory, and either variant will target the correct folder.

Note: When updating most Windows Services, even when a service updates itself, the service assemblies can be replaced immediately, without deferring to a restart. The AppLife Update service core assembly houses a class used to marshal information between the User Interface process and the service started worker process. For this reason, even though the service is successfully stopped, a lock is still being maintained on the core service assembly while the update is executed. Because this lock is not released until the update completes, the file replacement is deferred until restart. We do not need to force an operating system restart, as the previous update service can be restarted and function properly until the system is restarted. If a restart were necessary, we could include a Restart Operating System action to accomplish this.

The service assemblies ship with AppLife Update already embedded into the AppLifeUpdateService.msm merge module. After an installation, the assemblies will be in the common program files folder and can be extracted from there. After this action executes, the Windows Service will be updated. Now we just need to restart the service.

Restarting the Service

The service is restarted by adding a Start Service update action. The action is configured by defining the name of the service to restart. In this case it is again, KjsUpdateService2.

That’s it! Windows Service update completed.

But My Service is My Application?

This example assumes an existing update process exists and can be utilized to update the Windows Service. This is usually an installed application that utilizes the Windows Service, and can take responsibility for updating it. A stand-alone Windows Service can become “Self Updating” just as easily by integrating an update process using the AppLife API. There is one point to make in this scenario. When applying an update, you want to use the option to instruct the update controller not to shut down the host application (the service). The Stop Service update action performs a proper service shutdown through the use of the Windows Service Control Manager, and is the recommended method to use when stopping a service for an update.

Using AppLife Manager is also an excellent option for deploying and maintaining Windows Services.  AppLife Manager is turn-key and requires zero code integration.

Scroll to Top